Sparse hierarchical clustering based on Menopause Rating Scale severity of symptoms collected from perimenopausal and postmenopausal US women in a menopause tablet perceptual efficacy study

Author:

Kuesten Carla1ORCID,Bi Jian2ORCID,Zanetti Holiday Durham3,Dang Jennifer3

Affiliation:

1. Kuesten Sensory Perception Research, LLC Richland Michigan USA

2. Sensometrics Research and Service Richmond Virginia USA

3. Nutrilite Health Institute Buena Park California USA

Abstract

AbstractThe sparse hierarchical clustering (SHC) method and the R package “sparcl” are used for consumer segmentation with 247 perimenopausal and postmenopausal US women. The data includes 11 menopause rating scale (MRS) attributes measuring severity of symptoms collected in the first week of a 12‐week extended use menopause tablet perceptual efficacy study. SHC is one of the advanced statistical clustering approaches for high‐dimensional data with potential noise variables. Sparse clustering is an important topic of the actively developing field of statistical learning with sparsity. An advantage of the SHC method is that it simultaneously finds the clusters of subjects and the important clustering variables. It allows clustering the data in low‐dimensional subspaces without dimension reduction of the data before clustering. The SHC method is particularly applicable to consumer segmentation based on high‐dimensional consumer data.Practical ApplicationsSparse hierarchical clustering (SHC) provides advantages in consumer segmentation based on high‐dimensional consumer data with potential noise variables. This advanced clustering method finds the relative importance of attributes in clustering, helping to identify homogeneous clusters and enhance understanding of how consumer responses/needs vary among clusters.

Funder

Amway Corporation

Publisher

Wiley

Subject

Sensory Systems,Food Science

Reference25 articles.

1. Sorting procedure as an alternative to quantitative descriptive analysis to obtain a product sensory map;Cartier R.;FQAP,2006

2. On using principal components before separating a mixture of two multivariate normal distributions;Chang W. C.;Journal of the Royal Statistical Society: Series A (Statistics in Society),1983

3. NbClust: AnRPackage for Determining the Relevant Number of Clusters in a Data Set

4. Charrad M. Ghazzali N. Boiteau V. &Niknafs A.(2015).NbClust Package for Determining the Best Number of Clusters. R package version 3.0.http://CRAN.R-project.org/package=NbClust

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Limitations of clustering with PCA and correlated noise;Journal of Statistical Computation and Simulation;2024-05-05

2. Functional Foods and Dietary Supplements;Handbook of Eating and Drinking;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3