An efficient virus‐induced gene silencing (VIGS) system for gene functional studies in Miscanthus

Author:

He Guo12,Zhao Xuhong1,Xu Yan1,Wang Yu1,Zhang Zhihai3,Xiao Liang4,Hudson Matthew3,Hu Ruibo1ORCID,Li Shengjun1

Affiliation:

1. CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory Qingdao 266101 People's Republic of China

2. University of Chinese Academy of Sciences Beijing 100049 People's Republic of China

3. Center for Advanced Bioenergy and Bioproducts Innovation, Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois 61801 USA

4. College of Bioscience and Biotechnology Hunan Agricultural University Changsha 410128 People's Republic of China

Abstract

AbstractVirus‐induced gene silencing (VIGS) is a powerful tool for transient gene functional analysis in plants, especially for monocot species (e.g., grasses) that are recalcitrant to transformation. Despite various VIGS systems that have been developed in different plant species, none was previously available for the bioenergy crop Miscanthus. Here, we report the establishment of an efficient and robust VIGS system mediated by Tobacco Rattle Virus (TRV) in Miscanthus. We first investigated the impact of various factors that may affect gene silencing efficiency using the Miscanthus sinensis Phytoene Desaturase (MsPDS) gene as a visual indicator of photobleaching. Then, we optimized the TRV‐elicited VIGS procedure using an orthogonal experimental design with four factors (sprout size, Agrobacterium concentration, vacuum infiltration time, and co‐incubation time) each at three levels. The following led to the highest silencing efficiency (~76%): inoculation of germinating seedlings (1.0–2.0 mm), Agrobacterium tumefaciens culture grown to optical density at 600 nm (OD600) of 0.4, vacuum infiltration for 90 min, and co‐incubation for 5 h. The VIGS system established was applicable for both M. sinensis and M. lutarioriparius, with comparable gene silencing efficiency. We verified the efficacy of the VIGS system via the functional characterization of the role of a MYB transcription factor, MsMYB112, in salt stress tolerance. Expression of MsMYB112 was successfully knocked down using the VIGS system, and this led to compromised salt tolerance in the silenced Miscanthus plants. The TRV‐based VIGS system established may, therefore, substantially facilitate functional genomic studies in Miscanthus.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Waste Management and Disposal,Agronomy and Crop Science,Renewable Energy, Sustainability and the Environment,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3