Smartphone‐based digital phenotyping for genome‐wide association study of intramuscular fat traits in longissimus dorsi muscle of pigs

Author:

Shen Yang1,Chen Yuxi2,Zhang Shufeng2,Wu Ze2,Lu Xiaoyu2,Liu Weizhen2,Liu Bang13ORCID,Zhou Xiang1345ORCID

Affiliation:

1. Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology Huazhong Agricultural University Wuhan China

2. School of Computer Science and Artificial Intelligence Wuhan University of Technology Wuhan China

3. Hubei Hongshan Laboratory Wuhan China

4. Shenzhen Institute of Nutrition and Health Huazhong Agricultural University Wuhan China

5. Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences Shenzhen China

Abstract

AbstractIntramuscular fat (IMF) content and distribution significantly contribute to the eating quality of pork. However, the current methods used for measuring these traits are complex, time‐consuming and costly. To simplify the measurement process, this study developed a smartphone application (App) called Pork IMF. This App serves as a rapid and portable phenotyping tool for acquiring pork images and extracting the image‐based IMF traits through embedded deep‐learning algorithms. Utilizing this App, we collected the IMF traits of the longissimus dorsi muscle in a crossbred population of Large White × Tongcheng pigs. Genome‐wide association studies detected 13 and 16 SNPs that were significantly associated with IMF content and distribution, respectively, highlighting NR2F2, MCTP2, MTLN, ST3GAL5, NDUFAB1 and PID1 as candidate genes. Our research introduces a user‐friendly digital phenotyping technology for quantifying IMF traits and suggests candidate genes and SNPs for genetic improvement of IMF traits in pigs.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3