De novo induction of a DNA–histone H3K9 methylation loop on synthetic human repetitive DNA in cultured tobacco cells

Author:

Otake Koichiro1ORCID,Kugou Kazuto1,Robertlee Jekson1,Ohzeki Jun‐ichirou1,Okazaki Koei1,Hanano Shigeru1,Takahashi Seiji2ORCID,Shibata Daisuke1ORCID,Masumoto Hiroshi1ORCID

Affiliation:

1. Laboratory of Chromosome Engineering, Department of Frontier Research and Development Kazusa DNA Research Institute 2‐6‐7 Kazusa‐Kamatari Kisarazu Chiba 292‐0818 Japan

2. Department of Biomolecular Engineering, Graduate School of Engineering Tohoku University Sendai Miyagi 980‐8579 Japan

Abstract

SUMMARYGenetic modifications in plants are crucial tools for fundamental and applied research. Transgene expression usually varies among independent lines or their progeny and is associated with the chromatin structure of the insertion site. Strategies based on understanding how to manipulate the epigenetic state of the inserted gene cassette would help to ensure transgene expression. Here, we report a strategy for chromatin manipulation by the artificial tethering of epigenetic effectors to a synthetic human centromeric repetitive DNA (alphoid DNA) platform in plant Bright‐Yellow‐2 (BY‐2) culture cells. By tethering DNA‐methyltransferase (Nicotiana tabacum DRM1), we effectively induced DNA methylation and histone methylation (H3K9me2) on the alphoid DNA platform. Tethering of the Arabidopsis SUVH9, which has been reported to lack histone methyltransferase activity, also induced a similar epigenetic state on the alphoid DNA in BY‐2 cells, presumably by activating the RNA‐dependent DNA methylation (RdDM) pathway. Our results emphasize that the interplay between DNA and histone methylation mechanisms is intrinsic to plant cells. We also found that once epigenetic modification states were induced by the tethering of either DRM1 or SUVH9, the modification was maintained even when the direct tethering of the effector was inhibited. Our system enables the analysis of more diverse epigenetic effectors and will help to elucidate the chromatin assembly mechanisms of plant cells.

Funder

New Energy and Industrial Technology Development Organization

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3