Modulation of starch synthesis in Arabidopsis via phytochrome B‐mediated light signal transduction

Author:

Shi Qingbiao12ORCID,Xia Ying1ORCID,Xue Na1ORCID,Wang Qibin12ORCID,Tao Qing1ORCID,Li Mingjing1ORCID,Xu Di12ORCID,Wang Xiaofei1ORCID,Kong Fanying1ORCID,Zhang Haisen1ORCID,Li Gang1ORCID

Affiliation:

1. National Key Laboratory of Wheat Improvement, College of Life Sciences Shandong Agricultural University Tai'an 271018 China

2. National Key Laboratory of Wheat Improvement, College of Agronomy Shandong Agricultural University Tai'an 271018 China

Abstract

ABSTRACTStarch is a major storage carbohydrate in plants and is critical in crop yield and quality. Starch synthesis is intricately regulated by internal metabolic processes and external environmental cues; however, the precise molecular mechanisms governing this process remain largely unknown. In this study, we revealed that high red to far‐red (high R:FR) light significantly induces the synthesis of leaf starch and the expression of synthesis‐related genes, whereas low R:FR light suppress these processes. Arabidopsis phytochrome B (phyB), the primary R and FR photoreceptor, was identified as a critical positive regulator in this process. Downstream of phyB, basic leucine zipper transcription factor ELONGATED HYPOCOTYL5 (HY5) was found to enhance starch synthesis, whereas the basic helix‐loop‐helix transcription factors PHYTOCHROME INTERACTING FACTORs (PIF3, PIF4, and PIF5) inhibit starch synthesis in Arabidopsis leaves. Notably, HY5 and PIFs directly compete for binding to a shared G‐box cis‐element in the promoter region of genes encoding starch synthases GBSS, SS3, and SS4, which leads to antagonistic regulation of their expression and, consequently, starch synthesis. Our findings highlight the vital role of phyB in enhancing starch synthesis by stabilizing HY5 and facilitating PIFs degradation under high R:FR light conditions. Conversely, under low R:FR light, PIFs predominantly inhibit starch synthesis. This study provides insight into the physiological and molecular functions of phyB and its downstream transcription factors HY5 and PIFs in starch synthesis regulation, shedding light on the regulatory mechanism by which plants synchronize dynamic light signals with metabolic cues to module starch synthesis.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3