Spectral data fusion in nondestructive detection of food products: Strategies, recent applications, and future perspectives

Author:

Guo Minqiang12,Wang Kaiqiang1ORCID,Lin Hong1ORCID,Wang Lei1,Cao Limin1,Sui Jianxin1ORCID

Affiliation:

1. State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering Ocean University of China Qingdao Shandong China

2. College of Food Science and Engineering Xinjiang Institute of Technology Aksu Xinjiang China

Abstract

AbstractIn recent years, the food industry has shown a growing interest in the development of rapid and nondestructive analytical methods. However, the utilization of a solitary nondestructive detection technique offers only a constrained extent of physical or chemical insights regarding the sample under examination. To overcome this limitation, the amalgamation of spectroscopy with data fusion strategies has emerged as a promising approach. This comprehensive review delves into the fundamental principles and merits of low‐level, mid‐level, and high‐level data fusion strategies within the domain of food analysis. Various data fusion techniques encompassing spectra‐to‐spectra, spectra‐to‐machine vision, spectra‐to‐electronic nose, and spectra‐to‐nuclear magnetic resonance are summarized. Moreover, this review also provides an overview of the latest applications of spectral data fusion techniques (SDFTs) for classification, adulteration, quality evaluation, and contaminant detection within the purview of food safety analysis. It also addresses current challenges and future prospects associated with SDFTs in real‐world applications. Despite the extant technical intricacy, the ongoing evolution of online data fusion platforms and the emergence of smartphone‐based multi‐sensor fusion detection technology augur well for the pragmatic realization of SDFTs, endowing them with formidable capabilities for both qualitative and quantitative analysis in the realm of food analysis.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Postdoctoral Innovation Project of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3