A spatiotemporal control method at isolated intersections under mixed‐autonomy traffic conditions

Author:

Dai Rongjian1,Ding Chuan2,Yu Bin2,Hu Jia3

Affiliation:

1. School of Qilu Transportation Shandong University Jinan China

2. School of Transportation Science and Engineering, Key Laboratory of Intelligent Transportation Technology and System of the Ministry of Education Beihang University Beijing China

3. Key Laboratory of Road and Traffic Engineering of the Ministry of Education Tongji University Shanghai China

Abstract

AbstractWith the introduction of connected and automated vehicles (CAVs), the integrated control of traffic signals, lane assignments, and vehicle trajectories becomes feasible, offering notable benefits for enhancing intersection operations. However, during the prolonged transition to an entirely CAV environment, how to fully leverage the advantage of CAVs while considering the characteristics of human‐driven vehicles remains a huge challenge. To address this challenge, this paper proposes a joint optimization method for spatiotemporal resources at isolated intersections under mixed‐autonomy traffic conditions. Initially, the lane assignment optimization problem is modeled as a mixed integer linear program model to maximize the reserve capacity. Subsequently, the signal‐vehicle coupled control is formulated as a dynamic programming model with the objective of reducing vehicle travel time. Additionally, criteria are established to assess the need for re‐optimizing lane assignments. Simulations validate the superiority of the proposed control method over adaptive control in terms of traffic efficiency and intersection capacity amid substantial traffic demand fluctuations. Sensitivity analyses reveal that the proposed control method can yield higher benefits under medium traffic demand levels. Furthermore, the proposed algorithm exhibits no significant sensitivity to the CAV market adoption rate, suggesting its applicability throughout the CAV adoption process.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Science Applications,Civil and Structural Engineering,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3