Deep spatial‐temporal embedding for vehicle trajectory validation and refinement

Author:

Zhang Tianya Terry123,Jin Peter J.1,Piccoli Benedetto2,Sartipi Mina3

Affiliation:

1. Department of Civil and Environmental Engineering Rutgers University – New Brunswick New Brunswick New Jersey USA

2. Department of Mathematical Sciences Rutgers University – Camden Camden New Jersey USA

3. Center for Urban Informatics and Progress University of Tennessee Chattanooga Chattanooga Tennessee USA

Abstract

AbstractHigh‐angle cameras are commonly used for trajectory data collection in transportation research. However, without refinement and validation, trajectory data obtained through video processing software may be unreliable, inaccurate, or incomplete. This paper focuses on a critical issue in the field of trajectory data acquisition and analysis—there is still no reliable and fully vetted trajectory dataset in the research community. The current practice for validating video‐based trajectory can be classified as indirect methods and direct methods. Indirect methods of trajectory validation use algorithms to efficiently correct data anomalies without human intervention but may overlook detailed driving behaviors, whereas direct methods involve meticulous manual verification to preserve data fidelity but are labor‐intensive and less scalable. The spatial‐temporal maps (STMaps) method offers an additional layer of verification to affirm the accuracy and reliability of trajectory data. To enhance the performance, the deep spatial‐temporal embedding model is proposed for trajectory instance segmentation on STMaps using the contrastive learning framework. The parity constraints at both pixel and instance levels guide the deep neural network to learn the embedding spaces that can be built on different backbone networks. The reconstructed Next Generation Simulation (NGSIM) highway dataset trajectory dataset is thoroughly validated against manually processed ground truth, and the error‐free NGSIM data are refined to be a reliable resource for transportation research based on car‐following behaviors, lane‐change frequency, consistency, and jerk value measurements.

Funder

U.S. Department of Homeland Security

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3