Affiliation:
1. Department of Civil and Environmental Engineering Rutgers University – New Brunswick New Brunswick New Jersey USA
2. Department of Mathematical Sciences Rutgers University – Camden Camden New Jersey USA
3. Center for Urban Informatics and Progress University of Tennessee Chattanooga Chattanooga Tennessee USA
Abstract
AbstractHigh‐angle cameras are commonly used for trajectory data collection in transportation research. However, without refinement and validation, trajectory data obtained through video processing software may be unreliable, inaccurate, or incomplete. This paper focuses on a critical issue in the field of trajectory data acquisition and analysis—there is still no reliable and fully vetted trajectory dataset in the research community. The current practice for validating video‐based trajectory can be classified as indirect methods and direct methods. Indirect methods of trajectory validation use algorithms to efficiently correct data anomalies without human intervention but may overlook detailed driving behaviors, whereas direct methods involve meticulous manual verification to preserve data fidelity but are labor‐intensive and less scalable. The spatial‐temporal maps (STMaps) method offers an additional layer of verification to affirm the accuracy and reliability of trajectory data. To enhance the performance, the deep spatial‐temporal embedding model is proposed for trajectory instance segmentation on STMaps using the contrastive learning framework. The parity constraints at both pixel and instance levels guide the deep neural network to learn the embedding spaces that can be built on different backbone networks. The reconstructed Next Generation Simulation (NGSIM) highway dataset trajectory dataset is thoroughly validated against manually processed ground truth, and the error‐free NGSIM data are refined to be a reliable resource for transportation research based on car‐following behaviors, lane‐change frequency, consistency, and jerk value measurements.
Funder
U.S. Department of Homeland Security
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献