Sentiment analysis for Urdu online reviews using deep learning models

Author:

Safder Iqra1,Mahmood Zainab1,Sarwar Raheem2ORCID,Hassan Saeed‐Ul1,Zaman Farooq1,Nawab Rao Muhammad Adeel3,Bukhari Faisal4,Abbasi Rabeeh Ayaz5,Alelyani Salem67,Aljohani Naif Radi8,Nawaz Raheel9ORCID

Affiliation:

1. Department of Computer Science Information Technology University Lahore Pakistan

2. Research Group in Computational Linguistics University of Wolverhampton Wolverhampton UK

3. Department of Computer Science COMSATS University Lahore Lahore Pakistan

4. Punjab University College of Information Technology University of the Punjab Lahore Pakistan

5. Department of Computer Science Quaid‐i‐Azam University Islamabad Pakistan

6. Center for Artificial Intelligence (CAI) King Khalid University Abha Saudi Arabia

7. College of Computer Science King Khalid University Abha Saudi Arabia

8. Faculty of Computing and Information Technology King Abdulaziz University Jeddah Saudi Arabia

9. Department of Computing and Mathematics Manchester Metropolitan University Manchester UK

Funder

King Khalid University

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transforming Language Translation: A Deep Learning Approach to Urdu–English Translation;Journal of Ambient Intelligence and Humanized Computing;2024-08-22

2. CNN-Based Models for Emotion and Sentiment Analysis Using Speech Data;ACM Transactions on Asian and Low-Resource Language Information Processing;2024-08-08

3. A transformer-based Urdu image caption generation;Journal of Ambient Intelligence and Humanized Computing;2024-07-02

4. Detection of Sarcasm in Urdu Tweets Using Deep Learning and Transformer Based Hybrid Approaches;IEEE Access;2024

5. Revolutionizing Urdu Sentiment Analysis: Harnessing the Power of XLM-R and GPT-2;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3