A transformer-based Urdu image caption generation

Author:

Hadi Muhammad,Safder Iqra,Waheed Hajra,Zaman Farooq,Aljohani Naif Radi,Nawaz Raheel,Hassan Saeed Ul,Sarwar RaheemORCID

Abstract

AbstractImage caption generation has emerged as a remarkable development that bridges the gap between Natural Language Processing (NLP) and Computer Vision (CV). It lies at the intersection of these fields and presents unique challenges, particularly when dealing with low-resource languages such as Urdu. Limited research on basic Urdu language understanding necessitates further exploration in this domain. In this study, we propose three Seq2Seq-based architectures specifically tailored for Urdu image caption generation. Our approach involves leveraging transformer models to generate captions in Urdu, a significantly more challenging task than English. To facilitate the training and evaluation of our models, we created an Urdu-translated subset of the flickr8k dataset, which contains images featuring dogs in action accompanied by corresponding Urdu captions. Our designed models encompassed a deep learning-based approach, utilizing three different architectures: Convolutional Neural Network (CNN) + Long Short-term Memory (LSTM) with Soft attention employing word2Vec embeddings, CNN+Transformer, and Vit+Roberta models. Experimental results demonstrate that our proposed model outperforms existing state-of-the-art approaches, achieving 86 BLEU-1 and 90 BERT-F1 scores. The generated Urdu image captions exhibit syntactic, contextual, and semantic correctness. Our study highlights the inherent challenges associated with retraining models on low-resource languages. Our findings highlight the potential of pre-trained models for facilitating the development of NLP and CV applications in low-resource language settings.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3