Using Azadirachta indica protein hydrolysate as a plant protein in Nile tilapia (Oreochromis niloticus) diet: Effects on the growth, economic efficiency, antioxidant‐immune response and resistance to Streptococcus agalactiae

Author:

Abdel Rahman Afaf N.1ORCID,Amer Shimaa A.2ORCID,Behairy Amany3,Younis Elsayed M.4,Abdelwarith Abdelwahab A.4,Osman Ali5,Moustafa Amr A.6,Davies Simon J.7,Ibrahim Rowida E.1

Affiliation:

1. Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine Zagazig University Zagazig Sharkia Egypt

2. Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine Zagazig University Zagazig Sharkia Egypt

3. Department of Physiology, Faculty of Veterinary Medicine Zagazig University Zagazig Sharkia Egypt

4. Department of Zoology, College of Science King Saud University Riyadh Saudi Arabia

5. Biochemistry Department, Faculty of Agriculture Zagazig University Zagazig Sharkia Egypt

6. Department of Biochemistry, Faculty of Veterinary Medicine Zagazig University Zagazig Egypt

7. Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering University of Galway Galway Ireland

Abstract

AbstractA feeding trial for 90 days was conducted on Nile tilapia (Oreochromis niloticus) (average weight: 25.50 ± 0.05 g) to evaluate the effect of dietary inclusion of Azadirachta indica seed protein hydrolysate (AIPH). The evaluation included the impact on the growth metrics, economic efficiency, antioxidant potential, hemato‐biochemical indices, immune response, and histological architectures. A total of 250 fish were randomly distributed in five treatments (n = 50) and received diets included with five levels of AIPH (%): 0 (control diet, AIPH0), 2 (AIPH2), 4 (AIPH4), 6 (AIPH6) or 8 (AIPH8), where AIPH partially replace fish meal by 0, 8.7%, 17.4%, 26.1%, and 34.8%, respectively. After the feeding trial, a pathogenic bacterium (Streptococcus agalactiae, 1.5 × 108 CFU/mL) was intraperitoneally injected into the fish and the survival rate was recorded. The results elucidated that AIPH‐included diets significantly (p < 0.05) enhanced the growth indices (final body weight, total feed intake, total body weight gain, and specific growth rate) and intestinal morpho‐metrics (villous width, length, muscular coat thickness, and goblet cells count) in comparison to the control diet, with the AIPH8 diet recording the highest values. Dietary AIPH inclusion significantly improved (p < 0.05) the economic efficacy indicated by reduced feed cost/kg gain and increased performance index. The fish fed on the AIPH diets had noticeably significantly higher (p < 0.05) protein profile variables (total proteins and globulin) and antioxidant capabilities (superoxide dismutase and total antioxidant capacity) than the AIPH0 group. The dietary inclusion of AIPH significantly (p < 0.05) boosted the haematological parameters (haemoglobin, packed cell volume %, and counts of red blood cells and white blood cells) and immune indices (serum bactericidal activity %, antiprotease activity, and immunoglobulin M level) in a concentration‐dependent manner. The blood glucose and malondialdehyde levels were significantly (p < 0.05) lowered by dietary AIPH (2%−8%). The albumin level and hepatorenal functioning parameters (aspartate aminotransferase, alanine aminotransferase, and creatinine) were not significantly (p > 0.05) altered by AIPH diets. Additionally, AIPH diets did not adversely alter the histology of the hepatic, renal or splenic tissues with moderately activated melano‐macrophage centres. The mortality rate among S. agalactiae‐infected fish declined as dietary AIPH levels rose, where the highest survival rate (86.67%) was found in the AIPH8 group (p < 0.05). Based on the broken line regression model, our study suggests using dietary AIPH at the optimal level of 6%. Overall, dietary AIPH inclusion enhanced the growth rate, economic efficiency, health status, and resistance of Nile tilapia to the S. agalactiae challenge. These beneficial impacts can help the aquaculture sector to be more sustainable.

Funder

King Saud University

Publisher

Wiley

Subject

Animal Science and Zoology,Food Animals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3