Plant–plant interactions affect seasonal nitrogen uptake of subalpine conifer seedlings by altering root traits and soil nitrogen availabilities

Author:

Xie Lulu12,Hu Xuefeng12,Li Wanting12,Liu Qinghua1,Yin Chunying1ORCID

Affiliation:

1. CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu P. R. China

2. University of Chinese Academy of Sciences Beijing P. R. China

Abstract

AbstractAlthough it is known that plant–plant interaction is an important factor influencing plant nitrogen (N) uptake and biomass productivity, its effects on seasonal inorganic N uptake, preference, and allocation remain unclear. In this study, two conifer species (Picea asperata and Abies faxoniana) were planted in three different planting modes (i.e., single, intraspecific, and interspecific interaction). Using 15N stable isotope tracer, we quantified plant biomass, ammonium (NH4+), and nitrate (NO3) uptake rate (mass) and allocation in the middle (July) and the end (September) of the growing season, respectively, followed by analyses of root traits and soil properties so as to explore the underlying mechanism. Across the two seasons, intraspecific interaction decreased plant biomass and inorganic N‐uptake rate, which triggered intense competition for both species. Intraspecific competition of P. asperata was stronger than that of A. faxoniana. In contrast, interspecific interaction revealed significant facilitative effects on A. faxoniana, particularly in September. From the middle to the late growing season, the inorganic N‐uptake rate of P. asperata reduced, whereas that of A. faxoniana increased under interspecific interaction. The seasonal variation in plant N uptake was regulated by changes in root traits (such as root nitrogen concentration, specific root length, and branching intensity) and soil N availabilities. Both species indicated a preference for NO3 across seasons. Furthermore, we observed that 15N allocation to shoots of A. faxoniana under interspecific interaction was higher than that of P. asperata and declined from July to September. These findings on how plant–plant interactions affect plant N uptake seasonally can facilitate our understanding of species co‐existence and community assembly in forest ecosystems.

Funder

Sichuan Province Science and Technology Support Program

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3