Imeglimin enhances glucagon secretion through an indirect mechanism and improves fatty liver in high‐fat, high‐sucrose diet‐fed mice

Author:

Kikuchi Osamu1,Ikeuchi Yuichi1,Kobayashi Masaki1,Tabei Yoko1,Yokota‐Hashimoto Hiromi1,Kitamura Tadahiro1ORCID

Affiliation:

1. Metabolic Signal Research Center Institute for Molecular and Cellular Regulation, Gunma University Gunma Japan

Abstract

AbstractAims/IntroductionImeglimin is a recently approved oral antidiabetic agent that improves insulin resistance, and promotes insulin secretion from pancreatic β‐cells. Here, we investigated the effects of imeglimin on glucagon secretion from pancreatic α‐cells.Materials and MethodsExperiments were carried out in high‐fat, high‐sucrose diet‐fed mice. The effects of imeglimin were examined using insulin and glucose tolerance tests, glucose clamp studies, and measurements of glucagon secretion from isolated islets. Glucagon was measured using both the standard and the sequential protocol of Mercodia sandwich enzyme‐linked immunosorbent assay; the latter eliminates cross‐reactivities with other proglucagon‐derived peptides.ResultsPlasma glucagon, insulin and glucagon‐like peptide‐1 levels were increased by imeglimin administration in high‐fat, high‐sucrose diet‐fed mice. Glucose clamp experiments showed that the glucagon increase was not caused by reduced blood glucose levels. After both single and long‐term administration of imeglimin, glucagon secretions were significantly enhanced during glucose tolerance tests. Milder enhancement was observed when using the sequential protocol. Long‐term administration of imeglimin did not alter α‐cell mass. Intraperitoneal imeglimin administration did not affect glucagon secretion, despite significantly decreased blood glucose levels. Imeglimin did not enhance glucagon secretion from isolated islets. Imeglimin administration improved fatty liver by suppressing de novo lipogenesis through decreasing sterol regulatory element binding protein‐1c and carbohydrate response element binding protein and their target genes, while enhancing fatty acid oxidation through increasing carnitine palmitoyltransferase I.ConclusionsOverall, the present results showed that imeglimin enhances glucagon secretion through an indirect mechanism. Our findings also showed that glucagon secretion promoted by imeglimin could contribute to improvement of fatty liver through suppressing de novo lipogenesis and enhancing fatty acid oxidation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3