Phenotypic plasticity increases exposure to extreme climatic events that reduce individual fitness

Author:

Regan Charlotte E.1ORCID,Sheldon Ben C.1ORCID

Affiliation:

1. Department of Biology Edward Grey Institute, University of Oxford Oxford UK

Abstract

AbstractClimate models, and empirical observations, suggest that anthropogenic climate change is leading to changes in the occurrence and severity of extreme climatic events (ECEs). Effects of changes in mean climate on phenology, movement, and demography in animal and plant populations are well documented. In contrast, work exploring the impacts of ECEs on natural populations is less common, at least partially due to the challenges of obtaining sufficient data to study such rare events. Here, we assess the effect of changes in ECE patterns in a long‐term study of great tits, near Oxford, over a 56‐year period between 1965 and 2020. We document marked changes in the frequency of temperature ECEs, with cold ECEs being twice as frequent in the 1960s than at present, and hot ECEs being ~three times more frequent between 2010 and 2020 than in the 1960s. While the effect of single ECEs was generally quite small, we show that increased exposure to ECEs often reduces reproductive output, and that in some cases the effect of different types of ECE is synergistic. We further show that long‐term temporal changes in phenology, resulting from phenotypic plasticity, lead to an elevated risk of exposure to low temperature ECEs early in reproduction, and hence suggest that changes in ECE exposure may act as a cost of plasticity. Overall, our analyses reveal a complex set of risks of exposure and effects as ECE patterns change and highlight the importance of considering responses to changes in both mean climate and extreme events. Patterns in exposure and effects of ECEs on natural populations remain underexplored and continued work will be vital to establish the impacts of ECEs on populations in a changing climate.

Funder

Biotechnology and Biological Sciences Research Council

H2020 European Research Council

Natural Environment Research Council

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3