Recurrent extreme climatic events are driving gorgonian populations to local extinction: low adaptive potential to marine heatwaves

Author:

Ramirez-Calero SandraORCID,Gómez-Gras D,Barreiro A,Bensoussan N,Figuerola-Ferrando L,Jou M,López-Sanz A,López-Sendino P,Medrano A,Montero-Serra I,Pagès-Escolà M,Linares C,Ledoux JB,Garrabou J

Abstract

AbstractExtreme climatic events (ECEs), such as marine heatwaves (MHWs), are a major threat to biodiversity. Understanding the variability in ecological responses to recurrent ECEs within species and underlying drivers arise as a key issue owing to their implications for conservation and restoration. Yet, our knowledge on such ecological responses is limited since it has been mostly gathered following “single-event approaches” focused on one particular event. These approaches provide snapshots of ecological responses but fall short of capturing heterogeneity patterns that may occur among recurrent ECEs, questioning current predictions regarding biodiversity trends. Here, we adopt a “multi-event” perspective to characterize the effects of recurrent ECEs and the ecological responses inParamuricea clavata, a Mediterranean temperate coral threatened by MHWs. Through a common-garden experiment repeated three consecutive years with the same individuals from three populations, we assessed the respective roles of environmental (year effect), genetic (population effect) and phenotypic (population-by-environmentinteractions effect) components in the ecological response to recurrent heat stress. The environmental component (year) was the main driver underlying the responses ofP. clavatacolonies across experiments. To build on this result, we showed that: i) the ecological responses were not related to population (genetic isolation) and individual (multilocus heterozygosity) genetic make-up, ii) while all the individuals were characterized by a high environmental sensitivity (genotype-by-environmentinteractions) likely driven byin-situsummer thermal regime. We confront our experimental results toin situmonitoring of the same individuals conducted in 2022 following two MHWs (2018, 2022). This confirms that the targeted populations harbor limited adaptive and plastic capacities to on-going recurrent ECEs and thatP. clavatamight face unavoidable population collapses in shallow Mediterranean waters. Overall, we suggest that biodiversity forecasts based on “single event” experiments may be overly optimistic and underscore the need to consider the recurrence of ECEs in assessing threats to biodiversity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3