Improved three‐dimensional mapping of soil chromium pollution with sparse borehole data: Incorporating multisource auxiliary data into IDW‐based interpolation

Author:

Chen Jian12,Han Chunmei3,Peng Yuxuan12,Wang Meiyan12ORCID,Zhao Yongcun124ORCID

Affiliation:

1. Institute of Soil Science, State Key Laboratory of Soil and Sustainable Agriculture Chinese Academy of Sciences Nanjing China

2. University of Chinese Academy of Sciences Beijing China

3. Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment Beijing China

4. Nanjing College, University of Chinese Academy of Sciences Nanjing China

Abstract

AbstractDeriving an accurate three‐dimensional (3D) spatial distribution of heterogeneous soil pollutants at contaminated sites using traditional spatial interpolation methods, such as inverse distance weighting (IDW), is challenging; especially when only limited borehole data are available. This study presents a novel IDW‐COV method, where weighting is determined by optimizing relative importance between feature distances of covariates and spatial distances to soil sample locations. The method was tested by mapping the 3D distributions of Cr (VI) and total Cr at a Cr salt production workshop (Site A) and a legacy Cr slag stacking site (Site B). The results were compared with those of IDW, the soil land inference model (SoLIM), and the SoLIM combined with IDW method (SoLIM‐IDW). The proposed IDW‐COV method returned the highest accuracy, with R2 values of 0.83 for Cr (VI) in Site A and 0.75 for total Cr in Site B, compared with 0.65 and 0.57 for IDW, 0.16 and 0.58 for SoLIM, and 0.73 and 0.61 for SoLIM‐IDW. This study highlights the importance of considering differences in explanatory power between multidimensional covariate and geographical spatial distance when incorporating multisource auxiliary data into weighted average estimators and provides guidance for mapping 3D distributions of heterogeneous pollutants from sparse soil borehole data.

Publisher

Wiley

Subject

Pollution,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3