Functional identification of PhMATE1 in flower color formation in petunia

Author:

Yuan Junwei1ORCID,Qiu Zhujun1,Long Yu1,Liu Yazhi1,Huang Jiajun1,Liu Juanxu1ORCID,Yu Yixun1ORCID

Affiliation:

1. Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture South China Agricultural University Guangzhou China

Abstract

AbstractMultidrug and toxic compound extrusion (MATE) transporter proteins are a class of secondary transporter proteins that can transport flavonoids. Anthocyanins, a kind of flavonoid, are important secondary metabolites widely found in higher plants; they determine the flower color of most angiosperms. TT12 in Arabidopsis was the first MATE protein identified to be involved in flavonoid transport. Petunia (Petunia hybrida) is an important ornamental plant and is one of the ideal plants for studying plant flower color. However, there are few reports on anthocyanin transport in petunia. In this study, we characterized a homolog of Arabidopsis TT12 in the petunia genome, PhMATE1, that shares the highest amino acid sequence identity with Arabidopsis TT12. PhMATE1 protein contained 11 transmembrane helices. PhMATE1 showed a high transcription level in corollas. The silencing of PhMATE1 mediated by both virus‐induced gene silence and RNA interference changed flower color and reduced anthocyanin content in petunia, suggesting that PhMATE1 is involved in anthocyanin transport in petunia. Furthermore, PhMATE1 silencing downregulated the expression of the structural genes of the anthocyanin synthesis pathway. The results of this study supported the hypothesis that MATEs are involved in the sequestration of anthocyanins during flower color formation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3