Optimization of the soybean oil production process

Author:

Zheltoukhova E. Y.1ORCID,Kleimenova N. L.1ORCID,Bolgova M. A.1ORCID,Lesnyak M. A.1ORCID,Tronza P. A.1ORCID

Affiliation:

1. Voronezh State University of Engineering Technologies

Abstract

The technology of direct extraction with nephras followed by the further miscella purification from the solvent and acid hydration (citric acid) is used to produce soybean oil. The miscella is cleared of solvent by passing through a range of heat exchangers and distillers. The final distillation unit is a 2-stage distillation apparatus operating at approximately absolute 400 mbar . A significant drawback of these installations is the irrational use of steam and its heat, the possibility of the finished product overheating and its quality deterioration, the process low speed, complex design and maintenance. To intensify the process of solvent evaporation from the miscella film in the structure of the troughs in the film chamber, it is advisable to install cylindrical or slotted holes through which free falling jets of miscella are formed sequentially from the overlying loop of the trough to the plane of the underlying one. In this case, the miscella film moving along the chute has a certain hydrodynamic instability at the points of flow and the fall of the jet on the plane of the chute. Directly in the jet, the liquid, as a rule, is turbulized, and there is no laminar film. This technique significantly intensifies the distillation process. An aeration system for supplying live steam, represented by a tubular bubbler, should be installed for intensification as well. The use of tubular aerators makes it possible to achieve an increase in the ratio of the aerated area to the total area of ??the section with the use of a smaller number of aeration elements and a reduction in the length of the pipelines (by 4 times on average ). As a result, the time and cost of installation are reduced significantly.

Publisher

FSBEI HE Voronezh State University of Engineering Technologies

Subject

General Agricultural and Biological Sciences

Reference20 articles.

1. Petibskaya V.S. Soy: Chemical Composition and Uses. Maikop, JSC "Polygraph-Yug", 2012. 432 p. (in Russian).

2. Nechaev A.P. Food products of the XXI century. Oils and fats. 2011. no. 1. pp. 4–7. (in Russian).

3. Liu F., Liu Y., Liu X., Shan L., Wang X. Preparation of deolied soy lecithin by ultrafiltration. JAOCS. 2011. no. 88. pp. 1807–1812.

4. Sokolovsky S. Russian soybean market: trends and development prospects. Soybean and soybean meal market of the CIS and Europe: II International conference. Kaliningrad, 2013. (in Russian).

5. Nahashon S.N., Kilonzo-Nthenge A.K. Advances in Soybean and Soybean by-products in monogastric nutrition and health. Soybean Nutr. 2011. pp. 125–156.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a new technology for the production of food-grade soybean meal;INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE “CURRENT ISSUES OF BIOLOGY, BREEDING, TECHNOLOGY AND PROCESSING OF AGRICULTURAL CROPS” (CIBTA2022) (To the 110th anniversary of V.S. Pustovoit All-Russian Research Institute of Oil Crops);2023

2. Development of a new technology for the production of food-grade soybean meal;IOP Conference Series: Earth and Environmental Science;2022-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3