Computational modelling of foot orthosis for midfoot arthritis: a Taguchi approach for design optimization

Author:

Haowei Zhang ,Miko Lin Lv ,Junyan Yang ,Wenxin Niu ,James Chung-Wai Cheung ,Wanju Sun ,Duo Wai-Chi Wong ,Ming Ni

Abstract

Purpose: Evaluation of the internal biomechanics of the foot-and-ankle complex is challenging for the prescription of orthosis particularly for midfoot arthritis patients in which the joint condition is crucial. Methods: Using computational modeling and design optimization techniques, the objective of this study was to compare the biomechanical functions among different combinations of design factors using computer simulation. A finite element foot model was reconstructed from a midfoot arthritis patient. Orthotic designs with 3 levels for each of the 3 design factors (arch height, lateral wedge angle, and insole stiffness) contributed to 9 configurations using a fractional factorial design were tested. Results: An increase in peak plantar stress of the midfoot was facilitated by a medium arch height and wedge angle, and stiffest insole material, notwithstanding the combination neither reduced the peak plantar stress of other foot regions nor was consistent with the combination that minimized the stress of the articular cartilage. Conclusions: Insole with high arch (H = 30 mm), low stiffness (E = 1.0 MPa), and medium wedge angle (A = 5°) could minimize the stress of the cartilage at the arthritic joint (primary outcome) and could be beneficial to the patients. Also, insole stiffness predominantly influenced cartilage stress. However, secondary outcomes including the stress of the navicular and medial cuneiform and the regional plantar stress did not produce the same solution. Future studies can consider a patient-specific loading profile to further the investigation on the stabilizing effect and the attenuation of load transfer induced by the insole.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3