Influence of electro-osmosis activation time on vacuum electro-osmosis consolidation of a dredged slurry

Author:

Wang Jun1,Fu Hongtao1,Liu Feiyu2,Cai Yuanqiang13,Zhou Jie2

Affiliation:

1. College of Architecture and Civil Engineering, Key Laboratory of Engineering and Technology for Soft Soil Foundation and Tideland Reclamation, Innovation Center of Tideland Reclamation and Ecological Protection, Wenzhou University, 325035 Wenzhou, P.R. China.

2. Department of Civil Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200072, P.R. China.

3. Key Laboratory of Soft Soils and Geoenvironmental Engineering, Ministry of Education, Zhejiang University, 310058, Hangzhou, P.R. China.

Abstract

Combining vacuum preloading with electro-osmosis of a dredged slurry is a significantly effective technology for ground improvement. Despite extensive research, the mechanism of vacuum preloading combined with electro-osmosis is still not properly understood, especially regarding the optimum electro-osmosis activation time. In this study, laboratory tests were performed to confirm the influence of electro-osmosis activation time on vacuum electro-osmosis consolidation of a dredged slurry. A total voltage of 12 V was used in five tests with different electro-osmosis activation times. During the combined process of vacuum preloading and electro-osmosis, the vacuum pressure, electric current, and volume of extracted water were monitored. The water content and shear strength were measured after the tests. The results indicated that electro-osmosis was activated when the degree of consolidation for the soil reached 60%. Thus, this approach can significantly promote the effectiveness of soil consolidation. The shear strength distribution along the depth was much more uniform in all tests with electro-osmosis. The shear strength decreased linearly with increasing distance from the anode rows, but sharp increases occurred near the cathode row (or prefabricated vertical drains).

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3