Dietary restriction and/or exercise training impairs spermatogenesis in normal rats

Author:

Li Yinlam12,Zhang Li3,Zheng Xiaoguo12,Qian Jianing4,Li Yanquan12,Xie Chong12,Zhang Xuelian4,Zhou Yuchuan12,Huang Hefeng12

Affiliation:

1. International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.

2. Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, China.

3. Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.

4. State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200438, China.

Abstract

Dietary restriction and/or exercise has been shown to have multiple benefits for health. However, its effects on reproductive health and the mechanisms by which it regulates reproductive function remain unclear. Here, to evaluate its effects on spermatogenesis and sperm function, rats were divided into 4 groups: ad libitum-fed sedentary control, dietary restriction (DR), exercise training (ET), and dietary restriction plus exercise training (DR+ET) groups. Results indicated that body weight, epididymal fat pad weight, and sperm counts were significantly reduced in the DR, ET, and DR+ET groups. Moreover, sperm motility and capacitation-associated protein tyrosine phosphorylation were suppressed in the DR and DR+ET groups, but not the ET group. Microarray analysis revealed that the number of downregulated genes was higher than that of upregulated genes in the DR and/or ET groups. About half of the downregulated genes are common after exercise training and/or diet restriction. Gene ontology analysis showed that downregulated genes in the DR, ET, and DR+ET groups affected spermatogenesis through overlapping pathways, including glucocorticoid, corticosteroid, extracellular structure organization, and estradiol responses. Our findings suggest that diet restriction and/or exercise training may present potential risks to male reproductive dysfunction by disrupting normal gene expression patterns in the testis. Novelty: Dietary restriction and/or exercise can lead to the damage of spermatogenesis as well as sperm maturation. Sperm functional changes are more sensitive to dietary restriction than exercise training. Dietary restriction and exercise impair spermatogenesis through overlapping biological pathways in the testis.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3