Impaired proteostasis in obese skeletal muscle relates to altered immunoproteasome activity

Author:

Fletcher Emma1,Wiggs Michael1,Greathouse K. Leigh23,Morgan Grant4,Gordon Paul M.1

Affiliation:

1. Department of Health, Human Performance and Recreation, Baylor University, Waco, TX 76798, USA.

2. Department of Biology, Baylor University, Waco, TX 76798, USA.

3. Department of Human Sciences and Design, Baylor University, Waco, TX 76798, USA.

4. Department of Educational Psychology, Baylor University, Waco, TX 76798, USA.

Abstract

Obesity-associated inflammation and/or oxidative stress can damage intramuscular proteins and jeopardize muscle integrity. The immunoproteasome (iProt) is vital to remove oxidatively modified proteins, but this function may be compromised with obesity. We sought to elucidate whether diet-induced obesity alters intramuscular iProt content and activity in mice to identify a possible mechanism for impaired muscle proteostasis in the obese state. Total proteasome content and activity and estimates of muscle oxidative damage, inflammation, muscle mass and strength were also assessed. Twenty-three male, 5-week-old C57BL/6J mice were fed a high-fat, high-sucrose (HFS; 45% kcal fat, 17% sucrose, n = 12) or low-fat, low-sucrose (LFS; 10% kcal fat, 0% sucrose, n = 11) diet for 12 weeks. Strength was assessed via a weightlifting test. Despite no change in pro-inflammatory cytokines (P > 0.05), oxidative protein damage was elevated within the gastrocnemius (P = 0.036) and tibialis anterior (P = 0.033) muscles of HFS-fed mice. Intramuscular protein damage coincided with reduced iProt and total proteasome activity (P < 0.05), and reductions in relative muscle mass (P < 0.001). Therefore, proteasome dysregulation occurs in obese muscle and may be a critical link in muscle oxidative stress. Novelty: Our results show for the first time that immunoproteasome and total proteasome function is significantly reduced within obese muscle. Visceral fat mass is a significant predictor of diminished proteasome activity in skeletal muscle. Proteasome function is inversely correlated with an intramuscular accumulation of oxidatively damaged proteins.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3