Proteostasis in thermogenesis and obesity

Author:

Bartelt Alexander1234,Widenmaier Scott B.5

Affiliation:

1. Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Pettenkoferstr. 9, D-81377 Munich, Germany

2. German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Technische Universität München, Biedersteiner Straße 29, D-80802 Munich, Germany

3. Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany

4. Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston MA 02115, USA

5. Department of Anatomy, Physiology and Pharmacology in the College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatchewan, S7N 5E5 Saskatoon, Canada

Abstract

AbstractThe proper production, degradation, folding and activity of proteins, proteostasis, is essential for any cellular function. From single cell organisms to humans, selective pressures have led to the evolution of adaptive programs that ensure proteins are properly produced and disposed of when necessary. Environmental factors such as temperature, nutrient availability, pathogens as well as predators have greatly influenced the development of mechanisms such as the unfolded protein response, endoplasmic reticulum-associated protein degradation and autophagy, working together in concert to secure cellular proteostasis. In our modern society, the metabolic systems of the human body face the distinct challenge of changed diets, chronic overnutrition and sedentary lifestyles. Obesity and excess white adipose tissue accumulation are linked to a cluster of metabolic diseases and disturbed proteostasis is a common feature. Conversely, processes that promote energy expenditure such as exercise, shivering as well as non-shivering thermogenesis by brown adipose tissue (BAT) and beige adipocytes counteract metabolic dysfunction. Here we review the basic concepts of proteostasis in obesity-linked metabolic diseases and focus on adipocytes, which are critical regulators of mammalian energy metabolism.

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3