Interaction between high-intensity interval training and high-protein diet on gut microbiota composition and body weight in obese male rats

Author:

Aliabadi Mohsen1,Saghebjoo Marziyeh1ORCID,Yakhchali Bagher2,Shariati Vahid2

Affiliation:

1. Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran

2. National Institute of Genetic Engineering and Biotechnology, Tehran, Iran

Abstract

Diet and exercise are two critical factors that regulate gut microbiota, affecting weight management. The present study investigated the effect of 10 weeks of high-intensity interval training (HIIT) and a high-protein diet (HPD) on gut microbiota composition and body weight changes in obese male Wistar rats. Forty obese rats were randomly divided into five groups, including HPD, HIIT + HPD, HIIT + high-fat diet (HFD) (continuing HFD during intervention), obese control 1 (continuing HFD during intervention), obese control 2 (cutting off HFD at the beginning of the intervention and continuing standard diet), and eight non-obese Wistar rats as a non-obese control (NOC) group (standard diet). Microbial community composition and diversity analysis by sequencing 16S rRNA genes derived from the fecal samples, body weight, and Lee index were assessed. The body weight and Lee index in the NOC, HIIT + HFD, HPD, and HIIT + HPD groups were significantly lower than that in the OC1 and OC2 groups along with the lower body weight and Lee index in the HPD and HIIT + HPD groups compared with the HIIT + HFD group. Also, HFD consumption and switching from HFD to a standard diet or HPD increased gut microbiota dysbiosis. Furthermore, HIIT along with HFD increased the adverse effects of HFD on gut microbiota, while the HIIT + HPD increased microbial richness, improved gut microbiota dysbiosis, and changed rats’ phenotype to lean. It appears that HFD discontinuation without doing HIIT does not improve gut microbiota dysbiosis. Also, the HIIT + HFD, HPD, and HIIT + HPD slow down HFD-induced weight gain, but HIIT + HPD is a more reliable strategy for weight management due to its beneficial effects on gut microbiota composition.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3