The day-to-day reliability of residual force enhancement during voluntary and electrically stimulated contractions

Author:

Jacob Kaitlyn B.E.1,Hinks Avery1,Power Geoffrey A.1ORCID

Affiliation:

1. Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada

Abstract

Residual force enhancement (rFE) is characterized by increased steady-state isometric force following active muscle lengthening compared with a fixed-end isometric contraction at the same muscle length and level of neuromuscular activation. Many studies have characterized rFE in humans; however, the day-to-day reliability of rFE is unclear. We aimed to examine day-to-day reliability of rFE across various contraction types in the dorsiflexors in males and females. Twenty-five recreationally active young adults completed two visits, 1 week apart. Following determination of maximum voluntary contraction (MVC) strength, rFE was assessed during maximal voluntary effort, 20% MVC electrically stimulated, and 20% MVC torque-matching conditions. Each rFE condition was completed at two joint excursions: 0°–20° plantar flexion (PF) and 0°–40° PF. Intraclass correlation coefficients (ICC) assessed relative reliability and typical error of measurement (TEM), and the correlation variability of TEM (CVTEM) assessed absolute reliability. Electrically stimulated contractions demonstrated the highest reliability at 40° PF (ICC: 0.9; CVTEM: 22.8%) and 20° PF (ICC: 0.8; CVTEM: 34.3%), followed by maximal voluntary contractions at 40° PF (ICC: 0.7; CVTEM: 55.1%) and 20° PF (ICC: 0.1; CVTEM: 81.1%). The torque-matching trials showed poor reliability for 20° and 40° PF (ICC: −0.1 to 0.3; CVTEM: 118.1%–155.2%). Our results demonstrate higher reliability of rFE when stretching to the descending limb of the torque–angle relationship compared with the plateau region, and in electrically stimulated compared with voluntary contractions in the dorsiflexors for both males and females.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3