Residual force enhancement is affected more by quadriceps muscle length than stretch amplitude

Author:

Bakenecker Patrick1ORCID,Weingarten Tobias1,Hahn Daniel12ORCID,Raiteri Brent1ORCID

Affiliation:

1. Human Movement Science, Faculty of Sport Science, Ruhr University Bochum

2. School of Human Movement and Nutrition Sciences, University of Queensland

Abstract

Little is known about how muscle length affects residual force enhancement (rFE) in humans. We therefore investigated rFE at short, long, and very long muscle lengths within the human quadriceps and patellar tendon (PT) using conventional dynamometry with motion capture (rFETQ) and a new, non-invasive shear-wave tensiometry technique (rFEWS). Eleven healthy male participants performed submaximal (50% max.) EMG-matched fixed-end reference and stretch-hold contractions across these muscle lengths while muscle fascicle length changes of the vastus lateralis (VL) were captured using B-mode ultrasound. We found significant rFETQ at long (7±5%) and very long (12±8%), but not short (2±5%) muscle lengths, whereas rFEWS was only significant at the very long (38±27%), but not short (8±12%) or long (6±10%) muscle lengths. We also found significant relationships between VL fascicle length and rFETQ (r=0.63, p=0.001) and rFEWS (r=0.52, p=0.017), but relationships were not significant between VL fascicle stretch amplitude and rFETQ (r=0.33, p=0.126) or rFEWS (r=0.29, p=0.201). Squared PT shear-wave-speed-angle relationships did not agree with estimated PT force-angle relationships, which indicates that estimating PT loads from shear-wave tensiometry might be inaccurate. We conclude that increasing muscle length rather than stretch amplitude contributes more to rFE during submaximal voluntary contractions of the human quadriceps.

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference54 articles.

1. The force exerted by active striated muscle during and after change of length;Abbott;The Journal of Physiology,1952

2. Differences between measured and resultant joint moments during voluntary and artificially elicited isometric knee extension contractions;Arampatzis;Clinical Biomechanics (Bristol, Avon),2004

3. Repeated Measures Correlation;Bakdash;Frontiers in Psychology,2017

4. Patella tendon moment arm function considerations for human vastus lateralis force estimates;Bakenecker;Journal of Biomechanics,2019

5. Force enhancement in the human vastus lateralis is muscle-length-dependent following stretch but not during stretch;Bakenecker;European Journal of Applied Physiology,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3