A morphological trait-based approach to environmental assessment models using diatoms

Author:

Cormier Emily C.1,Sisson Danielle R.2,Rühland Kathleen M.3,Smol John P.3,Bennett Joseph R.1

Affiliation:

1. Institute of Environmental Science and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada.

2. School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia.

3. Paleoecological Environmental Assessment and Research Laboratory (PEARL), Dept. Biology, Queen’s University, Kingston, ON K7L 3N6, Canada.

Abstract

Diatom assemblages are excellent indicators for environmental monitoring. However, enumerating diatoms using fine-level taxonomy takes considerable effort, which must be undertaken by specialist taxonomists. One alternative is to enumerate assemblages using morphological traits. In this study, we compared the accuracy of models using 20 morphological traits with those using species assemblages to infer lake water pH, salinity, depth, and total phosphorus concentrations in four data sets, each comprising over 200 lakes. Assemblages aggregated by trait combinations were used to predict environmental variables via weighted averaging regressions, and richness of trait combinations was regressed against the environmental variables. Trait-based weighted averaging regressions showed slightly lower accuracy than species-level analyses and higher accuracy than analyses at the family and sometimes genus level. Richness of trait combinations showed relationships with pH, salinity, and lake depth that were marginally stronger than relationships using species richness. Although species-level analyses are the best approach when time and budgets allow, we suggest that trait combinations could provide an alternative method for water quality assessment programs, where funds do not allow the use of specialist taxonomists or where diatoms are being used as part of a multi-indicator analysis.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3