Scaling up experimental trawl impact results to fishery management scales — a modelling approach for a “hot time”

Author:

Ellis Nick1,Pantus Francis2,Pitcher C. Roland1

Affiliation:

1. CSIRO Wealth from Oceans Flagship, Ecosciences Precinct, 41 Boggo Road, Dutton Park, Queensland, Australia.

2. Australian Rivers Institute, Griffith University, Brisbane, Australia.

Abstract

Numerous studies have quantified trawl impacts at small scales. However, effective management of trawl impacts requires synthesis of experimental results (biomass depletion per tow and subsequent recovery) and application at fishery scales — realistically, this is achievable only in a modelling framework. We present a method for scaling up experimental results for management applications that incorporates a benthic biomass model having exponential trawl depletion and logistic recovery. Ultra-fine trawl-track data, supported by simulations, show that realistic trawling can be represented by a negative-binomial stochastic process, with intensity governed by large-scale effort and aggregation by a tunable parameter. Two mechanisms of the process are considered: aggregations in space (hot spots) and aggregations in time (hot times), which yields a logistic differential equation for the large-scale biomass over time. The model shows that scaling from fine scale to fishery scale depends on the degree of aggregation of fishing, with increasing aggregation lowering depletion rates at fishery scales. This model is a fundamental step in enabling assessment of large-scale implications and evaluating alternative management strategies.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3