Monitoring the water balance of seepage lakes to track regional responses to an evolving climate

Author:

Watras Carl J1,Michler James R2,Rubsam Jeff1

Affiliation:

1. University of Wisconsin-Madison, 5228, Center for Limnology, Madison, United States;

2. Wisconsin Department of Natural Resources, 114963, Madison, Wisconsin, United States;

Abstract

Understanding the causes of large fluctuations in lake water levels is important for adaptive resource management. The relatively simple water budgets of small seepage lakes make them potentially useful model systems, provided that key water balance components can be well constrained. Here, spatial variability in measured rates of evaporation (E) and precipitation (P) at the whole lake scale was investigated, and the effect on daily and seasonal water balance estimates was quantified. To estimate spatial variability, triplicate sensor platforms were deployed on and near an 18 ha seepage lake. Lake stage (S) was monitored at a single node in the lake. The water balance was closed by estimating net groundwater seepage (Gnet) analytically as Gnet = ∆S – (P – E). Instrumentation on a second seepage lake was maintained by citizen scientists to assess the potential for more widespread sensor deployments. Data were collected every 30-minutes for six months. The results indicate that low-cost sensor networks with single nodes to measure E, P and ∆S provide well-constrained water budgets at daily and seasonal time scales.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3