Abstract
Abstract
Tree rings can reveal long-term environmental dynamics and drivers of tree growth. However, individual ecological drivers of tree growth need to be disentangled from the effects of other co-occurring environmental and climatic conditions in tree rings to examine the histories of stand- to landscape-level ecological processes. Here, we integrate ecohydrological theory of groundwater–tree interactions with dendrochronological approaches and develop a new framework to isolate water-level effects on tree rings from climate induced variability in tree ring growth. Our results indicate that changing depth to groundwater within 1–2.3 m of the land surface exerts a substantial influence on red pine growth and this influence can be quantified and used to reconstruct long-term groundwater and lake level histories from tree ring patterns in Northern Wisconsin. This research suggests a substantial influence of groundwater on tree growth with implications for improving the mechanistic understanding of climate-induced tree mortality and reduce uncertainty in forest productivity models. Further, this is a transferable approach to isolate and reconstruct strong environmental drivers of tree growth that co-occur with other environmental signals.
Funder
Division of Environmental Biology
University of Wisconsin Water Resource Institute
Division of Earth Sciences
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment