Estimating spatial–temporal differences in Chinook salmon outmigration survival with habitat- and predation-related covariates

Author:

Henderson Mark J.1,Iglesias Ilysa S.2,Michel Cyril J.2,Ammann Arnold J.3,Huff David D.4

Affiliation:

1. US Geological Survey, California Cooperative Fish and Wildlife Research Unit, Department of Fisheries Biology, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA.

2. Institute of Marine Sciences, University of California, Santa Cruz, California, USA.

3. Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, California, USA.

4. Estuary and Ocean Ecology Program, Fish Ecology Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Hammond, Oregon, USA.

Abstract

Low survival rates of Chinook salmon (Oncorhynchus tshawytscha) smolts in California’s Central Valley have been attributed to multiple biological and physical factors, but it is not clear which factors have the largest impact. We used 5 years of acoustic telemetry data for 1709 late-fall Chinook salmon smolts to evaluate the effect of habitat- and predation-related covariates on outmigration survival through the Sacramento River. Using a Cormack–Jolly–Seber mark–recapture model, we estimated survival rates both as a function of covariates (covariate model) and as a function of river location and release year (spatial–temporal model). Our covariate model was overwhelmingly supported as the preferred model based on model selection criteria, suggesting the covariates adequately replicated spatial and temporal patterns in smolt survival. The covariates in the selected model included individual fish covariates, habitat-specific covariates, and temporally variable physical conditions. The most important covariate affecting salmon survival was flow. We describe the importance of these parameters in the context of juvenile salmon predation risk and suggest that additional research on predator distribution and density could improve model estimates.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3