Three problems with the conventional delta-model for biomass sampling data, and a computationally efficient alternative

Author:

Thorson James T.1

Affiliation:

1. Fisheries Resource Assessment and Monitoring Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA 98112, USA.

Abstract

Ecologists often analyse biomass sampling data that result in many zeros, where remaining samples can take any positive real number. Samples are often analysed using a “delta-model” that combines two separate generalized linear models, GLMs (for encounter probability and positive catch rates), or less often using a compound Poisson-gamma (CPG) distribution that is computationally expensive. I discuss three theoretical problems with the conventional delta-model: difficulty interpreting covariates for encounter probability, the assumed independence of the two GLMs, and the biologically implausible form when eliminating covariates for either GLM. I then derive an alternative “Poisson-link model” that solves these problems. To illustrate, I use biomass samples for 113 fish populations to show that the Poisson-link model improves fit (and decreases residual spatial variation) for >80% of populations relative to the conventional delta-model. A simulation experiment illustrates that CPG and Poisson-link models estimate covariate effects that are similar and biologically interpretable. I therefore recommend the Poisson-link model as a useful alternative to the conventional delta-model with similar properties to the CPG distribution.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3