Spatially varying catchability for integrating research survey data with other data sources: case studies involving observer samples, industry-cooperative surveys, and predators as samplers

Author:

Grüss Arnaud1ORCID,Thorson James T.2ORCID,Anderson Owen F.1,O’Driscoll Richard L.1,Heller-Shipley Madison34,Goodman Scott4

Affiliation:

1. National Institute of Water and Atmospheric Research Ltd (NIWA), Wellington, New Zealand

2. Habitat and Ecological Processes Research program, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, USA

3. School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA

4. Natural Resources Consultants, Inc., Seattle, WA, USA

Abstract

Spatio-temporal models are widely applied to standardise research survey data and are increasingly used to generate density maps and indices from other data sources. We developed a spatio-temporal modelling framework that integrates research survey data (treated as a “reference dataset”) and other data sources (“non-reference datasets”) while estimating spatially varying catchability for the non-reference datasets. We demonstrated it using two case studies. The first involved bottom trawl survey and observer data for spiny dogfish ( Squalus acanthias) on the Chatham Rise, New Zealand. The second involved cod predators as samplers of juvenile snow crab ( Chionoecetes opilio) abundance, integrated with industry-cooperative surveys and a bottom trawl research survey in the eastern Bering Sea. Our integrated models leveraged the strengths of individual data sources (the quality of the reference dataset and the quantity of non-reference data), while downweighting the influence of the non-reference datasets via the estimated spatially varying catchabilities. They allowed for the generation of annual density maps for a longer time-period and for the provision of one single index rather than multiple indices each covering a shorter time-period.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3