Using age compositions derived from spatio-temporal models and acoustic data collected by uncrewed surface vessels to estimate Pacific hake (Merluccius productus) biomass-at-age

Author:

Bolser Derek G.,Berger Aaron M.,Chu Dezhang,de Blois Steve,Pohl John,Thomas Rebecca E.,Wallace John,Hastie Jim,Clemons Julia,Ciannelli Lorenzo

Abstract

Generating biomass-at-age indices for fisheries stock assessments with acoustic data collected by uncrewed surface vessels (USVs) has been hampered by the need to resolve acoustic backscatter with contemporaneous biological (e.g., age) composition data. To address this limitation, Pacific hake (Merluccius productus; “hake”) acoustic data were gathered from a USV survey (in 2019) and acoustic-trawl survey (ATS; 2019 and eight previous years), and biological data were gathered from fishery-dependent and non-target (i.e., not specifically targeting hake) fishery-independent sources (2019 and eight previous years). To overcome the lack of contemporaneous biological sampling in the USV survey, age class compositions were estimated from a generalized linear mixed spatio-temporal model (STM) fit to the fishery-dependent and non-target fishery-independent data. The validity of the STM age composition estimation procedure was assessed by comparing estimates to age compositions from the ATS in each year. Hake biomass-at-age was estimated from all combinations of acoustics (USV or ATS in 2019, ATS only in other years) and age composition information (STM or ATS in all years). Across the survey area, proportional age class compositions derived from the best STM differed from ATS observations by 0.09 on average in 2019 (median relative error (MRE): 19.45%) and 0.14 across all years (MRE: 79.03%). In data-rich areas (i.e., areas with regular fishery operations), proportional age class compositions from the STM differed from ATS observations by 0.03 on average in 2019 (MRE: 11.46%) and 0.09 across years (MRE: 54.96%). On average, total biomass estimates derived using STM age compositions differed from ATS age composition-based estimates by approximately 7% across the study period (~ 3% in 2019) given the same source of acoustic data. When biomass estimates from different sources of acoustic data (USV or ATS) were compared given the same source of age composition data, differences were nearly ten-fold greater (22% or 27%, depending on if ATS or STM age compositions were used). STMs fit to non-contemporaneous data may provide suitable information for assigning population structure to acoustic backscatter in data-rich areas, but advancements in acoustic data processing (e.g., automated echo classification) may be needed to generate viable USV-based estimates of biomass-at-age.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference61 articles.

1. The relationship between Pacific hake (Merluccius productus) distribution and poleward subsurface flow in the California Current System;Agostini;Can. J. Fish. Aquat. Sci.,2006

2. Climate–ocean variability and Pacific hake: A geostatistical modeling approach;Agostini;J. Mar. Syst.,2008

3. Combining scientific survey and commercial catch data to map fish distribution;Alglave;ICES J. Mar. Sci.,2022

4. Pacific whiting, Merluccius productus, stocks off the west coast of Vancouver Island, Canada;Beamish;Mar. Fish. Rev.,1985

5. Space oddity: The mission for spatial integration;Berger;Can. J. Fish. Aquat. Sci.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3