Estimating the benefits of widespread floodplain reconnection for Columbia River Chinook salmon

Author:

Bond Morgan H.1,Nodine Tyler G.1,Beechie Tim J.2,Zabel Richard W.2

Affiliation:

1. Ocean Associates Inc., Under contract to: Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA.

2. Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA.

Abstract

In the Pacific Northwest, widespread stream channel simplification has led to a loss of habitat area and diversity for rearing salmon. Subsequent efforts throughout the Columbia River basin (CRB) have attempted to restore habitats altered through land development to recover imperiled salmon populations. However, there is scant evidence for demographic change in salmon populations following restoration. We used a process-based approach to estimate the potential benefit of floodplain reconnection throughout the CRB to Chinook salmon (Oncorhynchus tshawytscha) parr. Using satellite imagery, we measured stream habitats at 2093 CRB stream reaches to construct random forest models of habitat based on geomorphic and regional characteristics. Connected floodplain width was the most important factor for determining side channel presence. We estimated a current CRB-wide decrease in side channel habitat area of 26% from historical conditions. Reconnection of historical floodplains currently used for agriculture could increase side channel habitat by 25% and spring Chinook salmon parr total rearing capacity by 9% over current estimates. Individual watersheds vary greatly in habitat factors that limit salmon recovery, and large-scale estimates of restoration potential like these are needed to make decisions about long-term restoration goals among imperiled populations.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3