Shallow-Water Habitat in the Lower Columbia River Estuary: A Highly Altered System

Author:

Templeton William J.ORCID,Jay David A.,Diefenderfer Heida L.,Talke Stefan A.

Abstract

AbstractDecreases in shallow-water habitat area (SWHA) in the Lower Columbia River and Estuary (LCRE) have adversely affected salmonid populations. We investigate the causes by hindcasting SWHA from 1928 to 2004, system-wide, based on daily higher high water (HHW) and system hypsometry. Physics-based regression models are used to represent HHW along the system as a function of river inflow, tides, and coastal processes, and hypsometry is used to estimate the associated SWHA. Scenario modeling is employed to attribute SWHA losses to levees, flow regulation, diversion, navigational development, and climate-induced hydrologic change, for subsidence scenarios of up to 2 m, and for 0.5 m fill. For zero subsidence, the system-wide annual-average loss of SWHA is 55 ± 5%, or 51 × 105 ha/year; levees have caused the largest decrease ($${54}_{-14}^{+5}$$ 54 - 14 + 5 %, or ~ 50 × 105 ha/year). The loss in SWHA due to operation of the hydropower system is small, but spatially and seasonally variable. During the spring freshet critical to juvenile salmonids, the total SWHA loss was $${63}_{-3}^{+2}$$ 63 - 3 + 2 %, with the hydropower system causing losses of 5–16% (depending on subsidence). Climate change and navigation have caused SWHA losses of $${5}_{-5}^{+16}$$ 5 - 5 + 16 % and $${4}_{-6}^{+14}$$ 4 - 6 + 14 %, respectively, but with high spatial variability; irrigation impacts have been small. Uncertain subsidence causes most of the uncertainty in estimates; the sum of the individual factors exceeds the total loss, because factors interact. Any factor that reduces mean or peak flows (reservoirs, diversion, and climate change) or alters tides and along-channel slope (navigation) becomes more impactful as assumed historical elevations are increased to account for subsidence, while levees matter less.

Funder

Bonneville Power Administration

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3