The Chlorine Atom Sensitized Oxidation and the Ozonolysis of C2Cl4

Author:

Mathias Eckart,Sanhueza Eugenio,Hisatsune I. C.,Heicklen Julian

Abstract

The chlorine atom initiated oxidation of C2Cl4 was studied both in the absence and presence of O3 at 24 and 32 °C. In the absence of O3, the products are CCl3CCl(O) and CCl2O, and they are produced in a long-chain process in a ratio of 2.5 at 24 °C and 3.0 at 32 °C. The product producing step involves the decay of C2Cl5O radicals[Formula: see text]The ratio k6a/k6b is 5.0 at 24 °C and 6.0 at 32 °C since CCl3 reacts with O2 to produce another CCl2O molecule. In the presence of O3 the ratio Φ{CCl3CCl(O)}/Φ{CCl2O} drops, [Formula: see text] is produced, and the chain length is reduced. The change in Φ{CCl3CCl(O)}/Φ{CCl2O} is a function of [O3]/[O2] and is attributed to the additional reactions[Formula: see text]The epoxide yield is a function of [C2Cl4]/[O3] and is attributed to the reaction of ClO with C2Cl4. The ClO is produced by the reaction of Cl with O3[Formula: see text]which competes with[Formula: see text]The ratio k2/kl0 = 6.7. The reduction in yield as O3 is added results from the terminating reaction[Formula: see text]The ClO2 reacts further with O3 to produce Cl2O7.The reaction of O3 with C2Cl4 at 24 °C also produces mainly CCl3CCl(O) and CCl2O with [Formula: see text] as a minor product. Other minor products detected after extended conversions included Cl2, CO, and CO2. However c-C3Cl6 was not found. The ratio [CCl3CCl(O)]/[CCl2O] is < 1. Moreover, the addition of O2 retarded the reaction, indicating a long chain mechanism in which both free radicals (species with an odd number of electrons) and CCl2 were absent. A diradical chain mechanism is presented which explains the main features. The chain step is the addition of CCl2O2 to C2Cl4[Formula: see text]The adduct then reacts with O3 in a chain regenerating step or with O2 in a chain terminating step.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Halocarbenes May Deplete Atmospheric Ozone;Progress in Reaction Kinetics and Mechanism;2017-12

2. Die unbeabsichtigte Bildung toxischer Stoffe in Labor und Betrieb;Zeitschrift für Chemie;2010-08-31

3. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species;Atmospheric Chemistry and Physics;2008-08-04

4. References;Groundwater Chemicals Desk Reference, Fourth Edition;2007-04-18

5. Halogenated Aliphatic Hydrocarbons;Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, Second Edition;2006-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3