Affiliation:
1. Formerly of: US Environmental Protection Agency, Washington, DC, USA
Abstract
Photooxidation of tetrachloroethylene (PERC) and trichloroethylene (TCE) in simulated tropospheric smog chamber studies occurs with a time delay, accelerating simultaneous decreasing O3/chlorinated ethylene (CE) concentrations along with increasing CCl2O, which is attributed to CCl2 in the case of PERC and CCl2 or CHCl for TCE. The carbenes, chlorinated acetyl chlorides and CCl2O products may result from the rearrangement of the oxidised and/or excited oxidised CE, e.g. an epoxide. Analyses indicate scavenging experiments have not proved the existence of Cl atoms as being responsible for chlorinated acetyl chloride formation. Halocarbenes may form complexes with O3 which can undergo electron transfer (ET) and lead to dissociation of O3 to O2 and O and regeneration of carbene, resulting in a chain reaction. The direction of ET may be determined by the smallest differential HOMO–LUMO energy between the carbene and O3 which results in greater transition state stabilisation. Similarities in the reactions of O3 with carbenes and simple alkenes, nucleophilic carbenes with electron-poor alkenes and electrophilic carbene PhCCl with alkyl-substituted alkenes, i.e. (1) complex formation, (2) very low or negative activation energies and (3) the ability to undergo ET reactions with alkylalkenes are discussed. The possibility of the world-wide used perhalocarbons, e.g. perfluorinated carbons, hydroperhalocarbons, their halogenated replacements and starting materials degrading to halocarbenes which may degrade O3, is analysed.
Subject
Physical and Theoretical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献