Reduction of cavitation on spillways by induced air entrainment

Author:

Kells James A.,Smith C. D.

Abstract

Spillways for medium and high head dams may be exposed to high velocity flows and the associated destructive phenomenon of cavitation. Cavitation may occur at rough spots in the surface of the chute or tunnel, at local discontinuities in the finished surface such as construction joints, and at locations along critical flow profiles having significant deviations from design specifications. This paper addresses, on the basis of a review of the literature, a method for preventing or reducing cavitation damage on spillways through the use of spillway aerators. While the ability of induced or forced aeration to reduce or eliminate cavitation has been known for many years, it is only in relatively recent times that the aeration mechanism has been used to this advantage on spillways subject to high velocity flow. The recent application of aerators to spillway design is related, in part, to the trend toward higher head dams and larger design unit discharge rates. Design considerations and criteria for spillway aerators are presented in the paper, and the use of physical hydraulic models to make determinations of aerator performance is discussed. The intent of the paper is to provide a document with sufficient detail and scope to be useful as a first resource for spillway design practitioners. Key words: aerator design, air entrainment, cavitation, design criteria, high dam, model – prototype comparison, physical hydraulic model, spillway, spillway aeration.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3