Study on the influencing parameters of rough-strip energy dissipators of curved spillways based on orthogonal tests and numerical simulation

Author:

Zhang Honghong12,Mu Zhenwei12ORCID,Wang Yiyun3,Zhou Zhen12,Fan Fan4,Li Fanqi5,Ma Hao12

Affiliation:

1. a College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China

2. b Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China

3. c Xinjiang Forestry School, Urumqi 830011, China

4. d Xinjiang Fukang Pumped Storage Co., Ltd, Fukang 831100, China

5. e Anhui Jiufan Engineering Design & Consulting Co., Ltd, Hefei 230000, China

Abstract

Abstract Rough-strip energy dissipators (R-SEDs) can be arranged at the bend bottom of curved spillways to dissipate energy and divert flow for bend flow. Using the entropy weight and TOPSIS methods, a multi-criteria evaluation system was established for comprehensive energy dissipation and flow diversion effects of R-SEDs. Orthogonal tests and numerical simulation were conducted to analyze factors affecting these effects (average R-SED height, R-SED angle, R-SED spacing, bend width, bend centerline radius and discharge flow rate). It was found that bend width and bend centerline radius significantly affected R-SEDs' energy dissipation effects. Average R-SED height, R-SED spacing and bend centerline radius significantly affected R-SEDs' flow diversion effects. Bend width, average R-SED height and bend centerline radius significantly affected R-SEDs' combined effects of energy dissipation and flow diversion. Their energy dissipation effects were larger than the flow diversion effects. R-SEDs can effectively alleviate adverse hydraulic phenomena in curved spillways. With the recommended parameters, R-SEDs showed the best performance, with the energy dissipation rate increasing by 18.67% and the water surface superelevation coefficient decreasing by 26.14%. The accuracy of the multi-criteria evaluation system was verified. This study can provide a reference for the R-SED design of similar curved spillways.

Funder

National Natural Science Foundation of China

University Research Program Innovation Team Project of Xinjiang Uygur Autonomous Region

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3