Effects of Soil Water Deficit at Different Growth Stages on Maize Growth, Yield, and Water Use Efficiency under Alternate Partial Root-Zone Irrigation

Author:

Cheng Minghui,Wang Haidong,Fan Junliang,Zhang FucangORCID,Wang XiukangORCID

Abstract

To investigate the effects of alternate partial root-zone irrigation (APRI) and water deficit at different growth stages on maize growth, physiological characteristics, the grain yield, and the water use efficiency (WUE), a pot experiment was conducted under a mobile automatic rain shelter. There were two irrigation methods, i.e., conventional irrigation (CI) and APRI; two irrigation levels, i.e., mild deficit irrigation (W1, 55%~70% FC, where FC is the field capacity) and serious deficit irrigation (W2, 40%~55% FC); and two deficit stages, i.e., the seedling (S) and milking stage (M). Sufficient irrigation (W0: 70%~85% FC) was applied throughout the growing season of maize as the control treatment (CK). The results indicated that APRI and CI decreased the total water consumption (ET) by 34.7% and 23.8% compared to CK, respectively. In comparison to CK, APRI and CI increased the yield-based water use efficiency (WUEY) by 41% and 7.7%, respectively. APRI increased the irrigation water efficiency (IWUE) and biomass-based water use efficiency (WUEB) by 8.8% and 25.5% compared to CK, respectively. Additionally, ASW1 had a similar grain yield to CK and the largest harvest index (HI). However, the chlorophyll and carotenoid contents were significantly reduced by 13.7% and 23.1% under CI, and by 11.3% and 20.3% under APRI, compared to CK, respectively. Deficit irrigation at the milking stage produced a longer tip length, resulting in a lower grain yield. Based on the entropy weight method and the technique for order preference by similarity to an ideal solution (TOPSIS) method, multi-objective optimization was obtained when mild deficit irrigation (55%~70% FC) occurred at the seedling stage under APRI.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3