Author:
Calogeropoulos C,Greene D F,Messier C,Brais S
Abstract
We used a micrometeorological dispersal model to simulate seed and seedling distributions derived from subcanopy balsam fir (Abies balsamea (L.) Mill.) source trees in a trembling aspen (Populus tremuloides Michx.) dominated forest. Our first objective was to determine the effect of substituting basal area for cone production as a proxy for seed output. The results showed that the r2 from the regression of predicted versus observed densities increased by ~5% for seeds and ~15% for seedling simulations. Our second objective was to determine the effects of changing the median horizontal wind speed. The median speed in this forest environment varies according to the proportion of leaves abscised. For values of the median expected wind speed between the extremes of leafless and full-canopy forests, the r2 of predicted versus observed varied between 0.35 and 0.49 for seeds and between 0.33 and 0.62 for seedling simulations. We demonstrated that the simple one-dimensional model can have added precision if the dispersal parameters are chosen so as to allow more fine-scale variation.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献