Abstract
We developed and tested a wind-dispersal model of tree recruitment into burns from living sources at the fire edge or from small unburned residual stands. The model was also tested on recruitment of serotinous Pinus banksiana Lamb. within a burn. The model assumed that source strength is proportional to basal area density and that an individual (point source) recruitment curve can be expressed as a lognormal distribution. The model made significant predictions of the recruitment curves of Engelmann spruce (Picea engelmannii Parry ex Engelm.), white spruce (Picea glauca (Moench) Voss), and balsam fir (Abies balsamea (L.) Mill.) to distances as great as 2.0 km, although it tended to underpredict Abies and overpredict Picea. The model gave significant prediction of recruitment for jack pine (Pinus banksiana) within burns with seeds derived from aerial seed banks, and of white spruce and tamarck (Larix laricina (Du Roi) K. Koch) up to 100 m from residual stands. By forestry standards, burns are poorly stocked by those species that must obligately recruit from edges. In large fires, adequate stocking by a species such as white spruce that had 5 m2/ha of basal area would be limited to about 70 m from the edge. Small residual stands are expected to supply about half of all the recruits of white spruce or fir at distances exceeding about 800 m from a nominal burn edge.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献