Differentiation between wheat chromosomes 4B and 4D

Author:

Dvořák Jan,Dubcovsky Jorge,Luo Ming-Cheng,Devos Katrien M.,Gale Michael D.

Abstract

A linkage map based on homoeologous recombination, induced by the absence of the Ph1 locus, between chromosome 4D of Triticum aestivum L. (genomes AABBDD) and chromosome 4B of T. turgidum L. (genomes AABB) was compared with a linkage map of chromosome 4Amof T. monococcum L. and a consensus map of chromosomes 4B and 4D of T. aestivum based on homologous recombination. The 4D/4B homoeologous map was only one-third the length of the homologous maps and all intervals were reduced relative to the 4B–4D consensus map. After the homoeologous map was corrected for this overall reduction in recombination, the distribution of recombination in the short arm was similar in both types of maps. In the long arm, homoeologous recombination declined disproportionally in the distal to proximal direction. This gradient was shown to be largely caused by severe segregation distortion reflecting selection against 4D genetic material. The segregation distortion had a maximum that coincided with the centromere and likely had a polygenic cause. Chromosomes 4D and 4B were colinear and recombination between them occurred in almost all intervals where homologous recombination occurred. These findings suggest that these chromosomes are not differentiated structurally and that the differentiation is not segmental. In the presence of Ph1, metaphase I chromosome pairing between chromosomes composed of homologous and differentiated regions correlated with the lengths of the homologous regions. No compensatory allocation of crossovers into the homologous regions was detected. In this respect, the present results are in dramatic contrast with the crossover allocation into the pseudoautosomal region in the mammalian male meiosis.Key words: homoeology, recombination, segregation distortion, chromosome pairing, RFLP, pseudoautosomal region.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3