Author:
Milla MA Rodriguez,Gustafson J P
Abstract
The long arm of chromosome 4D in wheat (Triticum aestivum L.) has been shown in previous studies to harbor genes of agronomic importance. A major dominant gene conferring Aluminum (Al) tolerance (Alt2 in 'Chinese Spring' and AltBHin 'BH 1146'), and the Kna1 locus controlling the K+/Na+discrimination in saline environments have been mapped to this chromosome arm. However, accurate information on the genetic and physical location of markers related to any of these genes is not available and would be useful for map-based cloning and marker-assisted plant breeding. In the present study, using a population of 91 recombinant inbred lines segregating for Al tolerance, we provide a more extensive genetic linkage map of the chromosome arm 4DL based on RFLP, SSR, and AFLP markers, delimiting the AltBHgene to a 5.9-cM interval between markers Xgdm125 and Xpsr914. In addition, utilizing a set of wheat deletion lines for chromosome arm 4DL, the AltBHgene was physically mapped to the distal region of the chromosome, between deletion breakpoints 0.70 and 0.86, where the kilobase/centimorgan ratio is assumed to be low, making the map-based cloning of the gene a more realistic goal. The polymorphism rates in chromosome arm 4DL for the different types of markers used were extremely low, as confirmed by the physical mapping of AFLPs. Finally, analysis of 1 Mb of contiguous sequence of Arabidopsis chromosome 5 flanking the gene homologous to the BCD1230 clone (a cosegregating marker in our population coding for a ribulose-5-phosphate-3-epimerase gene), revealed a previously identified region of stress-related and disease-resistance genes. This could explain the collinearity observed in comparative mapping studies among different species and the low level of polymorphism detected in the chromosome arm 4DL in hexaploid wheat.Key words: wheat, aluminum, mapping, AFLP, SSR.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,General Medicine,Biotechnology
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献