Affiliation:
1. Saint-Hyacinthe Research and Development Center, Agriculture and Agri-food Canada, 3600 Casavant Blvd. W, Saint-Hyacinthe, QC J2S 8E3, Canada.
Abstract
The goal of this study was to evaluate the effectiveness of two approaches to protect the viability of probiotic cells during granola bar manufacturing and storage: microencapsulation (ME) and inclusion in chocolate chips. In the process used, hot honey (138 °C) was blended with cereal ingredients, resulting in an initial blend temperature of 52 °C. Chocolate chips carrying probiotics were added; however, when the blend was cooled to 42 °C. The viability of Lacticaseibacillus rhamnosus R0011 probiotic was assessed by flow cytometry (FC) and plating (CFU). There was an uneven distribution of inoculated probiotic bacteria throughout the cereal bars, resulting in variability in the CFU data. By providing total and viable counts, FC assessed the correct number of inoculated cells in the sample, which enabled the accurate calculation of survival levels. Spray coating with ME increased survival during manufacturing, but ME in alginate particles was detrimental. Including the cultures in chocolate improved the stability of the probiotics during storage at 25 °C, but only in the first 4 weeks. FC analyses showed that viability losses during bar manufacturing could be linked to damage to the cell membrane, but less so during storage.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献