The influence of stand and landscape characteristics on forest tent caterpillar (Malacosoma disstria) defoliation dynamics: the case of the 1999–2002 outbreak in northwestern Quebec

Author:

Charbonneau Daniel1,Lorenzetti François2,Doyon Frédérik2,Mauffette Yves1

Affiliation:

1. Department of Biological Sciences, Université du Québec à Montréal, 141 President-Kennedy Avenue, Montreal, QC H2X 1Y4, Canada.

2. Institut des Sciences de la Forêt tempérée, Université du Québec en Outaouais, 58 rue Principale, Ripon, QC J0V 1V0, Canada.

Abstract

The forest tent caterpillar (Malacosoma disstria Hbn.) is an eruptive forest insect common across North America and an important defoliator of trembling aspen (Populus tremuloides Michx.). Forest stands having suffered severe defoliations by the forest tent caterpillar over multiple years are known to incur reduced tree growth and increased tree mortality. In this study, we developed a predictive model of forest tent caterpillar defoliation dynamics using local and contextual variables expressing forest composition and structure, and their heterogeneity, at different scales. Of all scales considered (500, 1000, 1500, and 2000 m), contextual variables at 1500 m were found to have the greatest effect on defoliation dynamics. At this scale, we found that a greater proportion of preferred host trees in the landscape increased defoliation severity, but duration was modulated by compositional heterogeneity, where persistence was reduced in highly heterogeneous landscapes. Indeed, the likelihood of a single year of defoliation was much greater in highly diverse landscapes than the likelihood of multiple years of defoliation. These findings are consistent with ecological theory. Contrary to the expected result that older trees would be most susceptible, we found that “middle-aged” trees (~50 years) were most likely to be defoliated.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3