Methods of improving the performance of drilled piers in weak rock

Author:

Horvath R. G.,Kenney T. C.,Kozicki P.

Abstract

Investigations were made of two methods to improve the load–displacement performance of concrete piers socketed into very weak rock. Results of load tests on six full-size piers are reported.One method involved cutting grooves into the socket wall to roughen the pier–rock interface and thus increase the shaft resistance component of load support. Two types of piers were tested: piers with a void at the base (shaft resistance only) and piers having both shaft resistance and end-bearing resistance. In the latter case, flatjack load cells were installed to measure base loads. The test results indicated that increasing the roughness of the socket wall can cause important increases in shaft resistance.The second method involved the application of preload to the socket base to increase the end-bearing component of load support at small displacements. The test results showed that preloading the socket base resulted in a stiffer load–displacement behaviour of the pier–socket system.The initial portions of the load–displacement curves from all the tests were linear, reflecting elastic behaviour of the pier–socket system. This elastic behaviour did not appear to rely on socket roughness. Beyond the limit of proportionality, the load–displacement behaviour of each pier departed from that of an elastic system, and this departure was more rapid for the piers with smooth sockets than for those with roughened socket walls. Preloading the socket base caused the elastic range of loading to be extended.Two design approaches, limit-state analysis and elastic-state analysis, are discussed. Keywords: drilled piers and caissons, large-bored piles, shaft resistance, grooved shaft, load transfer, preload, shale, weak rock.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3