An overview of microbial research related to high-level nuclear waste disposal with emphasis on the Canadian concept for the disposal of nuclear fuel waste

Author:

Stroes-Gascoyne Simcha,West Julia M.

Abstract

Current research on the effects of microbiology on nuclear waste disposal, carried out in a number of countries, is summarized. Atomic Energy of Canada Limited has developed a concept for the permanent disposal of nuclear fuel waste in Canada. A program was initiated in 1991 to address and quantify the potential effects of microbial action on the integrity of the multibarrier system on which the disposal concept is based. This microbial program focuses on answering specific questions in areas such as the survival of bacteria under relevant radiation and desiccation conditions; growth and mobility of microbes in compacted clay buffer materials and the potential consequences for container corrosion and microbial gas production; the presence and activity of microbes in deep granitic groundwaters; and the effects of biofilms on radionuclide migration in the geosphere.Key words: nuclear waste disposal, radiation and desiccation effects, microbially influenced corrosion, radionuclide migration, gas production.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3