Bentonite-Based Organic Amendment Enriches Microbial Activity in Agricultural Soils

Author:

Datta Rahul,Holatko Jiri,Latal Oldrich,Hammerschmiedt TerezaORCID,Elbl JakubORCID,Pecina Vaclav,Kintl Antonin,Balakova Ludmila,Radziemska MajaORCID,Baltazar TivadarORCID,Skarpa Petr,Danish Subhan,Zafar-ul-Hye Muhammad,Vyhnanek TomasORCID,Brtnicky MartinORCID

Abstract

Bentonite-based organic amendments may have the potential to enhance soil microbial properties. The experiment was carried out from 2014 to 2017 comprising four treatments: NPK fertilizer (nitrogen, phosphorus and potassium mineral fertilizer as a control), NPK + cattle manure, NPK + bentonite, and NPK + combination of manure with bentonite (MB) to verify this hypothesis. The effect of treatments on seven different soil microbial properties was measured: dehydrogenase activity (DHA), bacterial phospholipid fatty acid content, fungal phospholipid fatty acid content, microbial biomass carbon (Cmic), 16S rDNA, 18S rDNA, and ammonia-oxidizing bacteria in soil. The results showed that solely bentonite treatment increases the bacterial and fungal biomass, which was further confirmed by the increased 16S rDNA and 18s rDNA gene copy numbers. The only significantly decreased values upon treatment with solely bentonite were recorded for DHA and Cmic. The ammonia-oxidizing bacteria population increased with the sole application of bentonite and reached its maximum value when bentonite was applied with manure. The MB treatment showed the highest value for all seven measured properties. In summary, the application of bentonite solely might increase or decrease the soil activity, but its addition, along with manure, always promotes an abundance of soil microorganisms and their activity. The co-application of bentonite with manure altered the soil microbial properties in a 3-year field experiment in favor of increased microbial biomass, which is beneficial for agriculture and environment and reveals the potential for the restoration of polluted lands.

Funder

Technology Agency of the Czech Republic

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3